248 research outputs found

    A quantitative study of styles and achenes of terminal and basal flowers of Schoenoplectus hallii (Cyperaceae), a rare plant species of transient wetland habitats

    Get PDF
    Schoenoplectus hallii (A. Gray) S.G. Smith (Cyperaceae), a rare plant restricted to wetland habitats, is of conservation concern throughout its range. Taxonomy of the species recently has been clarified; however, quantitative descriptions of achene and flower morphology are incomplete and life history information is lacking. Because of its scarcity and the transient nature of populations, any large-scale study of the species will require the recovery of achenes from bulk soil samples and the identification and separation of the dimorphic achenes. The objectives of this study were to separate, identify and photograph the two achene types; to quantify the size and morphological differences that will be useful in separating terminal and basal achenes; and to determine the range of variability in style morphology and achene size within and among 12 populations in four states. Although each achene type varies significantly in size among populations, size differences between terminal and basal achenes are statistically significant, and the range of sizes within each achene type is larger than has been previously reported. Terminal achenes are significantly smaller in length, width, beak length, mass and surface area than basal achenes, and noticeable differences occur in surface ridging. Differences in style morphology are distinct: terminal flower styles are predominantly bifid and consistent in shape, while basal flower styles, which are six times longer than terminal styles, are trifid with a wide variety of branching patterns. Terminal and basal achenes can be separated accurately and conveniently from bulk soil samples using a series of soil sieves. The visual and quantitative descriptions provided in this study will facilitate the collection and identification of terminal and basal achenes of S. hallii from plants, soil and wildlife

    COPI Activity Coupled with Fatty Acid Biosynthesis Is Required for Viral Replication

    Get PDF
    During infection by diverse viral families, RNA replication occurs on the surface of virally induced cytoplasmic membranes of cellular origin. How this process is regulated, and which cellular factors are required, has been unclear. Moreover, the host–pathogen interactions that facilitate the formation of this new compartment might represent critical determinants of viral pathogenesis, and their elucidation may lead to novel insights into the coordination of vesicular trafficking events during infection. Here we show that in Drosophila cells, Drosophila C virus remodels the Golgi apparatus and forms a novel vesicular compartment, on the surface of which viral RNA replication takes place. Using genome-wide RNA interference screening, we found that this step in the viral lifecycle requires at least two host encoded pathways: the coat protein complex I (COPI) coatamer and fatty acid biosynthesis. Our results integrate, clarify, and extend numerous observations concerning the cell biology of viral replication, allowing us to conclude that the coupling of new cellular membrane formation with the budding of these vesicles from the Golgi apparatus allows for the regulated generation of this new virogenic organelle, which is essential for viral replication. Additionally, because these pathways are also limiting in flies and in human cells infected with the related RNA virus poliovirus, they may represent novel targets for antiviral therapies

    Rift Valley Fever Virus Infection of Human Cells and Insect Hosts Is Promoted by Protein Kinase C Epsilon

    Get PDF
    As an arthropod-borne human pathogen, Rift Valley fever virus (RVFV) cycles between an insect vector and mammalian hosts. Little is known about the cellular requirements for infection in either host. Here we developed a tissue culture model for RVFV infection of human and insect cells that is amenable to high-throughput screening. Using this approach we screened a library of 1280 small molecules with pharmacologically defined activities and identified 59 drugs that inhibited RVFV infection with 15 inhibiting RVFV replication in both human and insect cells. Amongst the 15 inhibitors that blocked infection in both hosts was a subset that inhibits protein kinase C. Further studies found that infection is dependent upon the novel protein kinase C isozyme epsilon (PKCε) in both human and insect cells as well as in adult flies. Altogether, these data show that inhibition of cellular factors required for early steps in the infection cycle including PKCε can block RVFV infection, and may represent a starting point for the development of anti-RVFV therapeutics

    Virus Recognition by Toll-7 Activates Antiviral Autophagy in Drosophila

    Get PDF
    SummaryInnate immunity is highly conserved and relies on pattern recognition receptors (PRRs) such as Toll-like receptors (identified through their homology to Drosophila Toll) for pathogen recognition. Although Drosophila Toll is vital for immune recognition and defense, roles for the other eight Drosophila Tolls in immunity have remained elusive. Here we have shown that Toll-7 is a PRR both in vitro and in adult flies; loss of Toll-7 led to increased vesicular stomatitis virus (VSV) replication and mortality. Toll-7, along with additional uncharacterized Drosophila Tolls, was transcriptionally induced by VSV infection. Furthermore, Toll-7 interacted with VSV at the plasma membrane and induced antiviral autophagy independently of the canonical Toll signaling pathway. These data uncover an evolutionarily conserved role for a second Drosophila Toll receptor that links viral recognition to autophagy and defense and suggest that other Drosophila Tolls may restrict specific as yet untested pathogens, perhaps via noncanonical signaling pathways

    Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection

    Get PDF
    Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts

    Stem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense

    Get PDF
    SummaryDEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using crosslinking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous microRNA (miRNA) biogenesis and in the cytoplasm for surveillance against structured non-self-elements

    The Grizzly, April 11, 2013

    Get PDF
    Drug Search Policy • Advocates Strive to Empower • Diversity Report • 4th Annual Cuts for a Cause April 14 • New Club Fosters School Spirit • Move-Out Program • Pause for Paws Brings Cheer • Opinion: Ritter Needs Renovating; The R Word Hurts • Class of \u2713 Spotlight: Kevin Wilson • Senior Spotlight: Liz Chatburn, Women\u27s Lacrosse • Men\u27s Lacrosse Beats Yorkhttps://digitalcommons.ursinus.edu/grizzlynews/1881/thumbnail.jp

    Natural Resistance-Associated Macrophage Protein Is a Cellular Receptor for Sindbis Virus in Both Insect and Mammalian Hosts

    Get PDF
    SummaryAlphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection

    Expression of the Mxra8 receptor promotes alphavirus infection and pathogenesis in mice and Drosophila

    Get PDF
    Mxra8 is a recently described receptor for multiple alphaviruses, including Chikungunya (CHIKV), Mayaro (MAYV), Ross River (RRV), and O\u27nyong nyong (ONNV) viruses. To determine its role in pathogenesis, we generated mice with mutant Mxra8 alleles: an 8-nucleotide deletion that produces a truncated, soluble form (Mxra
    corecore